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Morris scheme for One At a Time (OAT) designs for sensitivity analysis [1] is widely used for rapid
identification of the groups of important (further classified into linear or mixed/non-linear) and
unimportant inputs of a multivariate function f(x), x ∈ A ⊂ Rk, and is particularly relevant for
models whose execution is computationally expensive and time consuming [2].

Morris designs are restricted to points in a finite k-dimensional grid G ⊂ A covering the domain
of f . Stated in simple terms, the method starts by randomly evaluating f(·) at r “initial points”
{x(n)}rn=1 in G. Starting at each of these r points, say x(n), k successive evaluations of f(·) are

made, each two consecutive points enabling the determination of an elementary effect EE
(n)
i along

a distinct direction i ∈ {1, . . . , k}. Morris designs are thus composed of r paths in G of size k + 1,
which do not have two segments along the same direction. Each input factor xi is then classified
as irrelevant, linear or other (non-linear or involved in cross-effects), depending on the first and

second order statistics of the set of elementary effects {EE
(n)
i }rn=1 observed. The attractiveness of

Morris Elementary Effects method relies on the fact that the size of the designs required to detect
the important input factors of f(·) is linear in the number of input factors (being equal to r(k+1))
irrespective of the resolution of the grid G, providing an efficient initial screening of the sensitivity
of f(·) with respect to each input factor.

Given its higher efficiency, the clustered version of Morris OAT designs (see [1], Section 5), that

computes m > 1 Elementary Effects {EE
(j)
i (x)}mj=1 along all directions i = 1, . . . , k of the input

space in the neighbourhood of each point x(n), is especially appealing. Surprisingly, these more
complex designs seem to have attracted much less interest than the original (m = 1) version.
Possible reasons are the lack of a constructive method for finding these designs, and, presumably,
concerns about the impact of residual correlation amongst the resulting set of elementary effects
along each direction, see [4].

In this communication we complete the original presentation of Morris [1], giving a formal speci-
fication of a family of balanced clustered designs for arbitrary values of k and m ≤ 2k−1 (Morris
construction is valid only for pairs (k,m) where k is not prime and m is a divisor of k). Our
construction is supported on the definition of an isometry between sub-graphs of the unit cube Qk

equipped of the Manhattan metric, and a set of polynomials in (x1, . . . , xk) on which a convenient
inner product is defined. This isometry, based on the association (si)

d
i=1 ∈ Qd ↪→ Xs1

1 · · ·X
sd
d ,

enables explicit symbolic representation and manipulation of designs, as well as the formal demon-
stration of their properties. We define (k,m)-edge balanced designs as those that enable the deter-
mination of exactly m elementary effects for each direction. Using our polynomial representation
this is equivalent to finding the polynomial solutions to a set of equations. The computation of the
set of elementary effects provided by any given subgraph is then immediate using our polynomial
representation, even if the designs are no longer OAT.

A natural but more complex algebra over the set of polynomials also enables the extension of Morris
concept of clustered designs to the estimation of two-factor interaction effects, SEEij(x), i 6= j ∈
{1, . . . , k}, that can detect the presence of products xixj of pairs of input factors. We define (k, c)-
cycle balanced designs as the subgraphs of the unit hypercube Qk that are (k,m)-edge balanced
for some m and contain exactly c 4-cycles in direction (i, j) all k(k − 1)/2 possible pairs. In the
paper we present the system of equations that define these designs. For c = 1, 2 and 3 we present
families of (k, c)-cycle balanced designs, that are recursively defined in terms of their polynomial
representations. The figure below shows a (5, 1)-cycle balanced solution, together with the recursive
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equations that define the family for c = 1. In this Figure, edges are coloured according to the
elementary effect that is computed from their end points, there are thus 5 distinct colors. The
graph represents a (5, 1)-cycle balanced design because there is exactly one cycle of dimension 4
involving all 10 possible pairs of colors.
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Our work is related to a previously proposed “New Morris method”, see [6,7]. However, these
references only consider the case c = 1, i.e., computation of a single mixed effect for each pair of
input factors and do not impose that the resulting designs are edge balanced.

We show how our approach can formally be extended to sampling of higher order derivatives by
imposing the presence of certain patterns in the designs graphs.

Explicit formulas for the size of our edge and cycle balanced designs are provided, and we compare
their economy (defined as in [1], as the ratio of the number of effects computed over the size of
the design) to the economy of the original and New Morris methods. The performance of cycle
balanced designs is demonstrated by considering both the analytical function on Morris’ original
paper [1] and a true simulation model of a complex system with a large number of inputs.

Finally, we discuss the problem of finding designs able to detect n-th order terms in each input
factor, which requires definition of a suitable isometry between {0, . . . , n}k and polynomials.
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