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We’ll be looking at two related problems
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Problem 1

Find subgraphs G ⇢ Q
d

of the d-dimensional hypercube with the property:

8i 2 {1, . . . , d}, the number of edges of G joining nodes that di↵er only in the

i-th coordinate is equal to m.

We say that graphs with this property are (d ,m)-edge equitable.

Q3

(3, 2)-edge equitable Not (3,m)-edge equitable
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Problem 2
Find edge equitable subgraphs G ⇢ Q

d

of the d-dimensional hypercube with the
property:

8i 6= j 2 {1, . . . , d}, the number of cycles of G in coordinates i , j is equal to c .

We say that graphs with this property are (d , c)-cycle equitable.

(4, 1)-cycle equitable not cycle equitable

(i, j) 2 3 4
1 1 1 1
2 1 1
3 1

(i, j) 2 3
1 1 0
2 0
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Motivation

Morris elementary e↵ects screening method for sensitivity analysis

(Technometrics, 1991)

Commonly used screening method for analysis of f : Rd ! R
Partitions input factors into linear, negligible and non-linear/mixed

Makes no assumptions about f

Simple (linear in the number of inputs), OAT global method.

Based on statistical analysis of

Elementary e↵ect along direction i 2 {q, . . . , d}

d
i

(y)
4
=

1

�
[f (y +�e

i

)� f (y)] , i 2 {1, . . . , d}
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Link to our work

Morris clustered designs
Design matrices B that allow computation of m > 1 elementary e↵ects along each
direction (i.e., each evaluation of f is used to compute several d

i

’s).

B1 =

2

66664

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

3

77775
10 points in Q4

(4, 2)-equitable subgraphs

B2 =

2

64

0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
1 1 1 0
1 1 0 1
1 1 1 1

3

75 7 points in Q4

Fédou, Menez, Pronzato & Rendas (I3S) OAT⇤ designs for mixed e↵ects Oviedo, December 2012 8 / 44



Why coming back to the problem?

Limitations of Morris clustered construction

not guided by m

does not yield all possible values of m

minimality of the size of the designs (e�ciency) is not guaranteed.

factored version (the most e�cient) defined only when d is not prime

not always equitable

Our contribution
Constructive algorithm for generation of the clustered designs of Morris method
guided by the target value of m and the dimension d of the input space

Handles generic values of (d ,m).

Always leads to equitable designs.

For pairs (d ,m) for which Morris construction is defined, leads to designs of
the same complexity.
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Why studying problem 2?

Extends Morris Elementary E↵ects method to (cross) derivatives of second order

Elementary mixed-e↵ects along directions i , j 2 {1, . . . , d}

d
(2)
ij

(y) =
1

�
[d

i

(y +�e
j

)� d
i

(y)], i 2 {1, . . . , d}

Previous work
The new Morris Method, Campolongo & Braddock (Reliability Engineering and
System Safety, 1999) : only defined for c = 1, less e�cient designs than ours and
no complete algorithmic construction.
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How do we do it?

Two basic ideas
1 (d ,m)-edge and (d , c)-cycle equitable subgraphs are recursively generated, by

combining smaller equitable solutions (for smaller values of d , and m or c)
2 use a polynomial representation to manipulate subgraphs and prove their

properties

Fédou, Menez, Pronzato & Rendas (I3S) OAT⇤ designs for mixed e↵ects Oviedo, December 2012 11 / 44



Sommaire

1 Problem formulation and summary of contributions

2 Polynomial representation of subgraphs

3 Generation of (d ,m)-edge equitable subgraphs

4 Factored (d ,m)-edge equitable designs

5 Generation of (d , c)-cycle equitable subgraphs

6 Size of the designs

7 Summary and further work

Fédou, Menez, Pronzato & Rendas (I3S) OAT⇤ designs for mixed e↵ects Oviedo, December 2012 12 / 44



Polynomial representation of subgraphs of Qd

Coding points of Q
d

by monomials

s = {s1, s2, . . . , sd} �! P
s

(X1,X2, . . . ,Xd

) = X s1
1 X s2

2 . . .X s

d

d

Example 2

66664

0
1
1
0
1

3

77775
2 Q5 ! X2X3X5 2 K (X1, . . . ,X5) = K5

Coding subgraphs of Q
d

by polynomials

G ⇢ Q
d

! P
G

=
X

s2G

P
s

P
G

: degree at most one in each variable, coe�cients in {0, 1}.
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Polynomial representation of subgraphs of Qd

Example
P = 1 + x1 + x3 + x1x2 + x1x3 + x2x3 ⇢ Q3

1

x1

x3

x1 x2

x1 x3

x2 x3

Edge coloring of Q3:

: x1

: x2

: x3
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Polynomial representation of subgraphs of Qd
Scalar product and structure

Definition of h·, ·i
P
s

, P
s

0 two monomials (s, s 0 2 Q
d

)
Define the scalar product

hP
s

,P
s

0i = 1
s=s

0 .

Extension to polynomials (G ,G 0 ⇢ Q
d

)

hP
G

,P
G

0i =
X

s2G ,s2G

0

hP
s

,P
s

0i .

Example

hX1X2,X1X2i = 1, hX1X2,X1X2X3i = 0

h1 + X1 + X2 + X1X2, 1 + X1X2 + X3i = 2
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Properties

hP
G

,P
G

0i = |G \ G 0|
hP

G

,P
G

i = |G |

Algebra over the polynomials

Addition + , graph sum (nodes multiplicity may be > 1)

Multiplication is defined modulo X 2
i

= 1, i 2 {1, . . . , d}
Multiplication of P

G

by a monomial s = X
i

, reflection of G along edge i

Example (X1 corresponds to red edges)

X1(1 + X1 + X2 + X1X3 + X2X3) = X1+ X 2
1+X1X2+ X 2

1X3+X1X2X3

= X1+ 1+X1X2+ X3+X1X2X3

1

x1

x2 x1 x3

x2 x3

!
1

x1

x3

x1 x2

x1 x2 x3
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Problem reformulation in terms of polynomials
Facts:

1 edges of color i are preserved by multiplication by X
i

. All other edges are
moved elsewhere in Q

d

2 (remember that |G \ G 0| = hP
G

,P
G

0i)
3 ) the number of edges of G of color i is exactly 2 hP

G

,X
i

P
G

i
4 ) the number of cycles in G in colors i , j is exactly

4 |P
G

\ X
i

P
G

\ X
j

P
G

\ X
i

X
j

P
G

|

Problem 1 reformulation
Optimal (d ,m)-edge equitable designs are the solutions of

P? = argmin
P2K

d

hP ,Pi

s.t. hP?,X
i

P?i = 2m, i 2 {1, 2, . . . , d}.

We drop minimality, and assess the simpler problem of finding small (d ,m)-edge
equitable designs (not necessarily minimal).
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Problem reformulation in terms of polynomials

Facts:
1 edges of color i are preserved by multiplication by X

i

. All other edges are
moved elsewhere in Q

d

2 (remember that |G \ G 0| = hP
G

,P
G

0i)
3 ) the number of edges of G of color i is exactly 2 hP

G

,X
i

P
G

i
4 ) the number of cycles in G in colors i , j is exactly

4 |P
G

\ X
i

P
G

\ X
j

P
G

\ X
i

X
j

P
G

|

Problem 2 reformulation
Optimal (d , c)-cycle edge equitable designs are the solutions of

P? = argmin
P2K

d

hP ,Pi

s.t. |P
G

\ X
i

P
G

\ X
j

P
G

\ X
i

X
j

P
G

| = 4c , i 6= j 2 {1, 2, . . . , d}.

As for Problem 1, we relax the minimality constraint.
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Generation of (d ,m)-edge equitable subgraphs of Qd

Recursive (in m) algorithm

Initialisation
m = 1, generic d

G 1
d

= 1 +
dX

i=1

X1 · · ·Xi

.

1 X1 X1X2 · · · X1 · · ·Xd
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Generation of (d ,m)-edge equitable subgraphs of Qd
Induction

m even
Gm

d

= G
m

2

d�1 + X1Xd

G
m

2

d�1

Example: G 4
4 = G 2

3 + X1X4G
2
3

X1 X4
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Generation of (d ,m)-edge equitable subgraphs of Qd
Induction

m odd
Gm

d

= G
m�1
2

d�1 + X1Xd

G
m+1
2

d�1

Example: G 5
4 = G 2

3 + X1X4G
3
3

X1 X4
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Theorem
Gm

d

are (d ,m)-edge equitable

Proof: use properties of scalar product (assumes an additional condition of
solutions for consecutive values of m)
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Generation of (d ,m)-edge equitable subgraphs of Qd
Topology and Initalisation

Other families of solutions can be obtained, by changing the initialization for small
values of m
This has an impact on the topology (and on the complexity!!) of the resulting
designs

G 5
5 , Init m = 1 only G 5

5 , Init m = 2, 3
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Factored (d ,m)-equitable designs

Direct application of our algorithm leads to less e�cient designs than Morris when
these are defined.

Factored application of our generic solution

qmin(m)
4
= dlog2(m)e+ 1 ,

d = (c � 1)qmin(m) + r , r 2 {qmin(m), . . . , 2qmin(m)� 1} .

G
Morris

(d ,m) = G (qmin,m)+
c�2X

j=1

(Shift
jqminG (qmin,m)� 1)+Shift(c�1)qmin

G (r ,m)

Fully-defined and provably edge equitable version of the basic idea of Morris
factored designs.
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Factored (d ,m)-edge equitable designs
Example

G

4

17

: 4 complete Q3 (X1 · · ·X3, X4 · · ·X6, X7 · · ·X9, X10 · · ·X12),
together with G 4

5 (over X13 · · ·X17)
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(d , 1)-cycle equitable subgraphs

Initialisation

For d = 2 and c = 1, define G 1
c2
= Q2

Induction

For d > 2 and c = 1, define G 1
c

d

= G 1
c

d�1
+ X

d

Line(d � 1)

�! �! �!
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(d , 2)-cycle and (d , 3)-cycle equitable subgraphs

Initialisation

For d = 3 and c = 2, define G 2
c3
= Q3

For d = 4 and c = 3, define G 3
c4
= Q4 � OnePoint(X2X4)

Induction

For d > 3 and c = 2, define G 2
c

d

= G 2
c

d�1
+ X

d

Circle(d � 1)

For d > 4 and c = 3, define G 3
c

d

= G 3
c

d�1
+ X

d

2Circles(d � 1)

Circle for d = 4 3Circles for d = 6
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Economy
Definition
Morris index, (|Gm

d

| should be small , � large)

Economy: � =
total # elementary e↵ects

|Gm

d

| =
md

|Gm

d

|

Economy of the (d ,m)-edge equitable designs

20 40 60 80

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Evolution of � as d grows, m = 10.
Factored designs, original designs with init G 1

d

, and with init G 2
d

,G 3
d

.
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Size of the (d , c)-cycle equitable designs

We obtain :

c Nb Edges Nb Points

1 d d

2+d+2
2

2 2d � 4 d2 � d + 2

3 3d � 5 3d2�7d+10
2

To compare with random designs and New Morris designs

c Nb Edges Nb Points
1 2

�
d

2

�
4
�
d

2

�

2 4
�
d

2

�
8
�
d

2

�

3 6
�
d

2

�
12
�
d

2

�

c Nb Edges Nb Points
1 not edge equitable 4 d2 � d + 2
2 ? ?
3 ? ?
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Summary
1 Recursive algorithm for (d ,m)-edge equitable graphs that completes the

definition of clustered Morris designs
2 Recursive algorithm for (d , c)-cycle equitable graphs for c = 1, 2, 3
3 Uses polynomial representation of subgraphs of the hypercube and an

appropriate definition of inner product as formal tools.
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Further work

Pending issues ...

minimality (of factored designs) ?

e↵ect of initialization ?

relation to other classes of subgraphs of the hypercube (median graphs, mesh
graphs,...)?

Generalize to subgraphs of {0, 1, . . . , k}d for computing higher order e↵ects
in each input factor
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Generation of (d ,m)-equitable subgraphs of Qd
Demonstration (equitable designs)

m even. Assume G
m/2
d�1 is (d � 1,m)-equitable.

⌦
G d

m

,X
i

G d

m

↵
=

8
>>>>>><

>>>>>>:

D
G

m

2

d�1,Xi

G
m

2

d�1

E
+

D
X1Xd

G
m

2

d�1,Xi

X1Xd

G
m

2

d�1

E
= 2m, if i < d

D
G

m

2

d�1,X1G
m

2

d�1

E
+

D
X1Xd

G
m

2

d�1,X1G
m

2

d�1

E
= 2m, if i = d

.
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Generation of (d ,m)-equitable subgraphs of Qd
Demonstration (equitable designs)

m odd. Assume G
m�1
2

d�1 and G
m+1
2

d�1 equitable

hGm

d

,X
i

Gm

d

i =

8
>>><

>>>:

D
G

m�1
2

d�1 ,Xi

G
m�1
2

d�1

E
+

+
D
G

m+1
2

d�1,Xi

G
m+1
2

d�1

E
, if i < d

2
D
G

m�1
2

d�1 ,X1G
m+1
2

d�1

E
, if i = d

=

(
(m � 1) + (m + 1) = 2m, if i < d

2
D
G

m�1
2

d�1 ,X1G
m+1
2

d�1

E
, if i = d

Thus
Gm

d

is (d ,m)-equitable ,
D
G

m�1
2

d�1 ,X1G
m+1
2

d�1

E
= m

It can be shown that
⌦
G k�1
d�1 ,X1G

k

d�1

↵
= 2k � 1 )

⌦
G 2k�1
d

,X1G
2k
d

↵
= 4k � 1

⌦
G k

d�1,X1G
k+1
d�1

↵
= 2k + 1 )

⌦
G 2k
d

,X1G
2k+1
d

↵
= 4k + 1
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Generation of (d ,m)-equitable subgraphs of Qd
Demonstration

⌦
G k

d�1,X1G
k+1
d�1

↵
= 2k + 1

Check that is true for k = 1, using the construction G 2
d

.

⌦
G 1
d

,X1G
2
d

↵
=

*
(1 +

dX

i=1

X1 · · ·Xi

), (X1 + X
d

)(1 +
d�1X

j=1

X1 · · ·Xj

)

+

= h1, 1i+ hX1,X1i+ hX1 · · ·Xd

,X1 · · ·Xd

i
= 3

The identity is thus valid for all k , completing the proof that our algorithm
generates (d ,m)-equitable subgraphs of Q

d

.
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Morris designs

Rd =
tY

j=1

Rq, d = tq Y =
t[

j=1

Y j ,

where
Y j = v

j

+ C [O
q

· · · O
q| {z }

j�1 blocks

I
q

O
q

· · ·O
q| {z }

t�j blocks

], j = 1, . . . , t ,

B
M

=

2

666664

0 0 0 · · · 0
C O O · · · O
J C O · · · O
J J C · · · O
· · · · · · · · · · · · · · ·
J J J · · · C

3

777775

0: q-element (row) vector of zeros, J: n
C

⇥ q matrix of ones.
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Morris designs

d = 9 = 3⇥ 3

⇥
C 0 0

⇤ ⇥
J C 0

⇤ ⇥
J J C

⇤

{X1 · · ·X3} {X4 · · ·X6} {X7 · · ·X9}
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Morris designs

Choice of C
Chose I ⇢ {1, . . . , q}. Let the rows of C (of dimension n

C

⇥ q) be the set of all
binary vectors with ` entries equal to one, 8` 2 I.

n
C

=
X

`2I
C q

`

m(I)= I (1)I (q) +
qX

j=2

I (j � 1)I (j)C q�1
j�1

Size of Morris designs

n
M

= tn
C

+ 1 =
d

q

X

`2I
C q

` + 1
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Initialisation

m = 2 d odd

m = 2, d even
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Initialisation

m = 3
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