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ABSTRACT2

This study focuses on predicting chronological age from a large omic dataset of over 8,0003
blood samples with 8,038 metabolites.4
To address these challenge, we propose first a new sparse fully connected neural5
network(SFCNN): a fully connected neural network (FCNN) enhanced with feature selection using6
structured sparse ℓ1,∞ projection. This approach aims to extract the most informative features7
from the high-dimensional data while mitigating the impact of noise and batch effects. The second8
contribution of this paper is the incorporation of the Wasserstein distance as an evaluation metric.9
Our experimental results on this large database demonstrate that the proposed SFCNN model10
achieves a RMSE of 5.66 years with only 4,983 features (62%) in predicting age, outperforming a11
standard FCNN using 8,038 features with an RMSE of 5.78 years.12
Thanks to the Wasserstein metric, we have selected a subset of 2, 694 metabolites (33%) which13
provides comparable predictive accuracy as 5.71 years to utilizing the full set of metabolites.14
Finally, the Wasserstein distance provides a more comprehensive evaluation of model15
performance than traditional metrics like RMSE or MAE, which focus on pointwise errors.16

Keywords: Machine learning Regression, Predicting human age, Sparse Neural Network, Bilevel ℓ1,∞ projection, Wasserstein metric.17
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1 INTRODUCTION

The study of human aging has attracted significant attention due to its implications for the extension of18
healthy lifespan. High Resolution Liquid Chromatography-Mass Spectrometry (HRLCMS) has emerged as19
a pivotal tool in aging research Liu et al. (2023), enabling detailed analysis of metabolites that reflect the20
biochemical state of an organism. HRLCMS is particularly valuable for its high sensitivity and specificity21
in detecting a wide range of metabolites, which makes it indispensable for metabolomics studies aimed at22
understanding the aging process .23

Recent advances have seen the integration of HRLCMS with machine learning (ML) techniques to24
develop accurate age-prediction models Reveglia et al. (2021). The ability to predict chronological age25
from metabolic data not only provides insights into the biological understanding of aging, but also holds26
the potential to identify individuals at risk of age-related diseases. For example, analyzing CSF samples27
from healthy adults revealed significant age-related changes in metabolites such as cysteine, pantothenic28
acid, and 5-hydroxyindoleacetic acid Liu et al. (2023). These findings suggest that metabolic dysregulation29
is a hallmark of aging and can be quantitatively assessed using HRLCMS.30

The integration of LC-MS and ML has led to significant advancements in the field of aging research.31
Studies have demonstrated that ML models can predict chronological age with high precision using32
metabolic profiles. For example, a study using data from the China Health and Retirement Longitudinal33
Study applied several ML algorithms, including Gradient Boosting Regressor and Random Forest, to34
develop a biological age measure Cao et al. (2021). Another study highlighted the use of ML to identify35
metabolic biomarkers for Alzheimer’s disease, showcasing the potential of these techniques in early disease36
detection and monitoring Reveglia et al. (2021).37

Lassen et al. previously modeled chronological age based on HRLCMS data from routine toxicological38
screenings of blood samples Lassen et al. (2023). These samples, while they present challenges in terms of39
experimental control and potential biases, provide a unique opportunity to investigate aging patterns within40
a large and diverse population.41

42

High-dimensional data, frequently encountered in proteomics and metabolomics studies, often presents43
challenges for traditional statistical analyses due to the "curse of dimensionality" Aggarwal (2005);44
Radovanovic et al. (2010) and the presence of technical noise and batch effects. These issues are particularly45
relevant in research on aging, where selecting reliable biomarkers from complex metabolic profiles is46
crucial.47
In this paper, we propose to predict the chronological age using a sparse fully connected neural network48
(SFCNN) with feature projections. We use the same dataset as in the original study Lassen et al. (2023) and49
show how sparse projection in combination with fully connected neural networks and Wasserstein distance50
improve feature selection for the prediction of human chronological age.51

52

2 METHOD: REGRESSION USING A FULLY CONNECTED NEURAL NETWORK
WITH FEATURE SELECTION USING THE BILEVEL ℓ1,∞ PROJECTION

Deep neural networks have proven their efficiency for classification and feature selection in many domains,53
and have also been applied to omics data analyses Truchi et al. (2024); Min et al. (2017); Emdadi and54
Eslahchi (2021); Lotfollahi et al. (2022); Leclercq et al. (2019). They have also been recently used in55
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metabolomic studies Alakwaa et al. (2018); Bradley and Robert (2013); Asakura et al. (2018); Mendez56
et al. (2019); Sen et al. (2020); Chardin et al. (2022); Lassen et al. (2023).57
Let X be the concatenated raw data matrix (n ×m) (n is the number of patients and m the number of58
metabolites). Y is the vector (n× 1) of the age of each patient. Let Ŷ be the encoded latent matrix (1× 1).59
W is the matrix of the weights of the Sparse linear fully connected neural network (SFCNN).60

2.1 Criterion61

The goal is to compute the network weights, W minimizing the regression loss. Moreover, to perform62
feature selection, as large datasets often present a relatively small number of informative features, we also63
want to sparsify the network, following the work proposed in Barlaud and Guyard (2020). Thus, instead64
of the classical computationally expensive Lagrangian regularization approach Hastie et al. (2004), we65
propose to minimize the following constrained approach introduced in Barlaud et al. (2017) in our Sparse66
Fully Connected neural Network (SFCNN):67

Loss(W ) = ϕ(Ŷ , Y ) s.t. BP 1,∞
η (W ). (1)

Where Ŷ is the estimate age by the neural network, ϕ is the mean square error loss, and BP1,∞ is the68
bilevel ℓ1,∞ projection Barlaud et al. (2024).69

Note that low values of η imply high sparsity of the network. We use the double descent algorithm70
Barlaud and Guyard (2021); Frankle and Carbin (2019).71

72

2.2 Feature selection using the bilevel ℓ1,∞ projection Barlaud et al. (2024)73

The ℓ1,∞ projection is of particular interest because it is able to set a whole set of columns to zero74
Quattoni et al. (2009); Bejar et al. (2021); Perez et al. (2023), instead of spreading zeros as done by the ℓ175
norm. This makes it particularly interesting for reducing computational cost. However, the complexity of76
this algorithm remains an issue. The time complexity of this algorithm is O

(
nm. log(nm)

)
for a matrix in77

Rn×m. Note that the complexity of the algorithm Perez et al. (2023) is, O
(
nm+ J. log(nm)

)
where J is a78

term that tends to 0 when the sparsity is high and n×m. when the complexity is low.79
80

The detailed propositions and algorithms for three bilevel projections ℓ1,∞, ℓ1,1 and ℓ1,2 were provided81
in Barlaud et al. (2024). The complexity of the bilevel algorithm is only O

(
nm

)
. The code is available82

online1 We propose here to use the bilevel ℓ1,∞ projection with linear cost rather than the standard ℓ1,∞83
projection Perez et al. (2023); Bejar et al. (2021).84

2.3 An evaluation metric using the Wasserstein distance85

RMSE and MAE are classical metrics for regression evaluation. Here, we introduce the Wasserstein86
distance (or Kantorovich–Rubinstein metric) as another approach for the evaluation of regression results.87
The optimal transport problem or earthmover’s distance was first formalized by Gaspard Monge in 178188
and solved by mathematician Cédric VillaniVillani (2008). The Wasserstein distance used in optimal89
transport is a natural way to compare the probability distributions of two variables and has been used in the90

1 https://github.com/MichelBarlaud/SAE-Supervised-Autoencoder-Omics
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Algorithm 1 Bi-level ℓ1,∞ projection (BP 1,∞
η (Y )) Barlaud et al. (2024).

The P 1
η () projection is computed using the fast ℓ1 linear projection methods Condat (2016); Perez et al.

(2019)
and P∞

uj (yj) is a simple clipping operator.

Input: Y, η
u← P 1

η ((∥y1∥∞, . . . , ∥yj∥∞, . . . , ∥ym∥∞))
for j ∈ [1, . . . ,m] do
xj ← P∞

uj (yj)

end for
Output: X

last decade in many machine learning applications Courty et al. (2016); Cuturi and Peyré (2018)91
92

3 EXPERIMENTAL RESULTS ON THE LARGE DATASET Lassen et al. (2023)

We implemented our SFCNN method using the PyTorch framework for the model, optimizer, schedulers93
and loss functions. We compute the weights using gradient with Adam method Kingma and Ba (2015).94
The dataset as described in Lassen et al. (2023) consist of blood samples collected from drivers suspected95
of drug-impaired driving between January 2017 and December 2020. The cohort is 93% male, with a mean96
age of 28.9 ± 9.2 years, and a skewed age distribution.97

3.1 Preprocessing of data98

Rather than using the PCA as done in the original study Lassen et al. (2023), we used the Local Outlier99
Factor (LOF) developed by Scikit-learn 2. This method is more robust for identifying outliers, helping to100
isolate samples that deviate significantly from the majority. We fine-tuned the parameter to achieve the best101
results using the train split of the data before removing outliers from the full dataset.102

103

After outlier removal, we log-transformed the data followed by a scaling (mean=0, standard deviation=1).104
After the preprocessing feature and sample preselection, our dataset was composed of 8,038 features and105
8,099 samples.106

3.2 Performance estimation107

We train and estimate performance using the classical cross-validation of 90% of the data ("train set"),108
8,184 samples, and we use the remaining 10% of the data, 815 samples, as external validation ("Final test")109
(See Figure 1) and 3.110

We train and estimate performance using the classical cross-validation of 90% of the data ("train set")111
and we use the remaining 10% of the data as external validation ("test set") (See Fig 1 4).112

In the cross validation, we opted for a 4-fold cross validation, which means that we have 6,138 samples113
for the test and 2,046 samples for the train, each with 8,038 features. We trained a fully connected neural114

2 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
3 https://github.com/NolwennPeyratout/FCNN-Age
4 https://scikit-learn.org/stable/modules/cross_validation.html
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Figure 1. Train-Test-validation scheme

network using 2 seeds and the 4 folds. Testing on 2 seeds provided a more accurate overview of the model’s115
statistical behavior, with all means and standard deviation computed over 8 folds.116

During training, we carefully tuned the impact of each parameter on model performance, including the117
SiLU activation continuous function, the batch size, and the learning rate. The best size of the three hidden118
layers of the fully connected neural network was set to n = 300 using cross validation.119
Thus, the matrix modeling the connection between the first layer and the second layer has a size of120
n = 300×m = 8038. The feature selection is done with the ℓ1,∞ projection applied to the first matrix. To121
remain consistent with this modification, we apply the projection on all the layers. We tune the parameter η122
of the projection in order to select features.123
To avoid any leakage from test data to any test performance, we split the data into a training and test split124
(9:1). All models were only using the training data to fit and evaluate model performance before finally125
being evaluated in the test set.126
After initial outlier removal, the dataset contained 8,099 samples with 8,038 features.127

3.3 Cross-validation evaluation of feature selection and accuracy prediction128

Using 4-fold cross-validation in the training data, we found the optimal number of features to be 5000 2129
with an RMSE of 5.75 years. Evaluating performance in the test set resulted in the same general pattern,130
but an overall lower RMSE (5.66 at 5000 features).131

Using mean absolute error gave slightly different results (3). While the cross-validation in the training132
data showed a minimal MAE at 5000 features, the test set showed a low MAE already at 2,500 features.133

134

Figures 2 and 3 report metrics results of the CV test using our SFCNN with the bilevel ℓ1,∞ projection,135
as a function of the number of selected features. The line show the results using either cross-validation136
of the training set (blue) or test set (orange). These metric results show that selecting only about 5,000137
features ensure a RMSE of 5.75 years (cross validation) and an RMSE of 5.66 years (test set). For the MAE,138
we have a similar result, with 4.29 years using cross-validation and 4.25 with the test set. Surprisingly,139
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Figure 2. RMSE results

the results of the test set showed a low MAE already at 2,500 features where the RMSE indicated 5,000140
features to obtain the best prediction.141

142

These loss distances curves, RMSE or MAE distance, as a function of the number of features, are convex.143
Therefore, this optimization requires a trade-off between error loss and the number of features. Note that it144
is the same trade-off to rate-distortion in lossy data compression Yochai and Michaeli (2019).145

146

We also used an alternative metric, the Wasserstein distance between the true age distribution and the147
predicted age distribution. We compare it for several values of η, in order to find the best value. The theory148
is explained in 2.3. This metric measures the similarity between two distributions; in this case, we use it to149
assess the similarity between the true and predicted distributions. For our numerical evaluation, we use the150
metric provided by SciPy: 5.151

The figure 4 shows that contrarily to previous RMSE and MAE curves, the Wasserstein distance provides152
an evident minimum for 2500 features for the cross-validation results and showed similar results for the153

5 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html

Frontiers 6

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html


Peyratout et al.

Figure 3. MAE results

test set.154
155

Thus, we conclude that using 2500 features is the best trade-off for RMSE and Wasserstein optimization.156
This conclusion is promising, indeed, we only need to compute the model with a third of the database to157
obtain good results. As a result, the computational cost of this learning is lower.158

159

Figure 5 show that the distribution of observed and predicted age from the cross validation results using160
2,500 (A) and 5,000 (B) features are similar.161

3.4 Prediction accuracy comparison162

Note that performances of classical machine learning methods (PLS Trygg et al. (2007), Random Forest163
Breiman (2001), Elastic net Zou and Hastie (2005)) were provided in Lassen et al. (2023). Standard FCNN164
outperforms the best classical method (Elastic net with a RMSE of 6.26 years). Thus, in this paper, we165
compare our SFCNN with the classical FCNN.166

167

Using two independent 4-fold cross-validations in the training set, we found that the bilevel SFCNN168
method with projection outperformed the classical FCNN (without projection) across all metrics (Table169
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Figure 4. Wasserstein distance on the CV test and the 10% test using our FCNN with the bilevel ℓ1,∞
projection, as a function of the number of selected features

Figure 5. SFCNN Bilevel distribution using a kernel method (bw=0.4) with 2500 and 5000 features of the
Cross validation test set

1) using both 2500 or 5000 features. Projection reduced the RMSE by 0.07 years when using 2,500170
features compared to the classical method. Moreover, the bilevel projection with 2,500 features improved171
the Wasserstein Distance by 0.28 compared to the classical approach. This improvement applies not only172
to the performance, but also to the number of required features, as only 31% of the features are required.173
This reduction is significant for calculation costs, as it enables the gradient descent computation on 31%174
fewer neurons in the first layer.175

176

3.5 Feature selection analysis177

The bilevel ℓ1∞ projection is a structured projection, which means that certain feature weights are entirely178
set to zero. In figure 6 (left), the top fifteen features are ranked in descending order according to their179
normalized weights given by the Python library SHAP Lundberg and Lee (2017). This library computes180
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Mean RMSE
CV test

Mean RMSE
test

Mean WD
CV test

Number of
features

SFCNN Bilevel ℓ1,∞ 5.81 ± 0.11 5.71 ± 0.09 1.32 ± 0.04 2,694
SFCNN Bilevel ℓ1,∞ 5.75 ± 0.1 5.66 ± 0.06 1.48 ± 0.09 4,983

Classical FCNN 5.85 ± 0.09 5.78 ± 0.04 1.50 ± 0.06 8,038

Table 1. Train-validation test, RMSE and WD (Wasserstein distance); Comparison of methods and
parameters for age estimation

the importance of each feature based on the learned weights of the neural network. We normalize these181
weights by the maximum value to determine the significance of each feature. We can distinguish a clear182
difference in feature’s weight between the first and the tenth features for both figures, but we do not have183
a distinct break. Additionally, the curve flattens as features become less important, showing that the top184
features, though not a precise number, are predominant.185

Figure 6. Features Ranking: Left for SFCNN with 2500 features, Right SFCNN with 5000 features

In figure 6 (right), features are normalized by the maximum value, as done previously. The ranked186
weights reveal the top discriminating metabolites, which can be interpreted as a perturbation signature. The187
major difference between the two figures is that, for the same top three features, the normalized weights188
given by SHAP for 2,500 features are slightly lower than those with 5,000 features, which may suggest as189
a less reliable top three. Note that the slope using the bilevel ℓ1∞ projection will give us a less flat curve190
compared to a classical deep neural network, resulting in a well-marked top features.191

To establish a more accurate comparison of the identified features, we constructed a table (Table 2)192
showing the top ten features discovered in our FCNN using 2,500 and 5,000 features, alongside those193
identified in the original study Lassen et al. (2023). The top three metabolites appear in identical ranks194
across both studies, meaning they converge on the same result and one additional feature (M176T211) is195
also shared across all three (highlighted in red). Three additional features (highlighted in blue) are shared196
between the two projection networks, showing the reliability of this approach with different value of η.197
Feature importance is very high for a few features, but decrease and flattens out really fast (figure 6). Many198
features will thus have similar importance (around 0.4) and may change rank between runs. It was only199
possible to annotate the first four features in the original paper.200
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SFCNN Bilevel 2500 SFCNN Bilevel 5000 Original paper
M250T142 M250T142 M250T142 [4-O-Dimethylallyl-tyrosine]
M211T219 M211T219 M211T219 [Cyclo(leu-pro)]
M170T102 M170T102 M170T102 [2,3-Dihydrodipicolinate]
M344T54 M344T54 M255T346 [18-Nor-4(19),8,11,13-abietatetraene]
M364T323 M176T211 M260T236
M456T83 M364T323 M257T356
M513T373 M509T442 M176T211
M176T211 M513T373 M469T561
M359T21 M212T206 M521T504
M345T55 M456T83 M220T196

Table 2. Top 10 features in descending order of weight. Features found in across all three lists are
highlighted in red. Features found in across all the first two are highlighted in blue.

4 DISCUSSION AND CONCLUSION

In summary, we find that the ℓ1,∞ projection improves prediction results and use fewer features than the201
original paper Lassen et al. (2023). The use of the ℓ1,∞ reduces the number of features during learning and,202
consequently, the computational cost with no loss of performance for this dataset. The ℓ1,∞ projection is203
particularly advantageous over the classical ℓ1 projection, as it selects entire columns, and thus relevant204
features, rather than isolated points within the matrix. As a result, learning with the ℓ1,∞ projection removes205
noisy features while improving RMSE, MAE and Wasserstein distance compared to the classical fully206
connected neural network.207

208

The bilevel ℓ1,1 projection has already proved its efficiency for classification in single cell application209
Truchi et al. (2024). In these case, the projection selected a limited number of selected features (hundreds)210
and provides a large accuracy improvement by 10% compared to standard network. Even though211
metabolomics and single cell gene expression data are and applications on regression in our case and212
classification for single cell are very different, our results show that the projection seem to be beneficial213
in both cases. This calls for further testing of the ℓ1,∞ projection in other high-dimensional biomedical214
datasets, to see if in the projection approach generally performs better than existing state-of-the-art methods.215

According to the outcomes obtained with the RMSE and the Wasserstein distance in our metabolomic216
application, the ℓ1,∞ projection provides a limited selected feature, around 30%, which correspond to 2,500217
selected features.218

219

The features selection results should be interpreted with caution, in fact, the data is from drivers suspected220
of driving under the influence of drugs. The features found may therefore have been influenced by drugs221
intake and may only be relevant within the context of this dataset.222

223

DATASET

The dataset presents different challenges; the samples were not collected under controlled conditions ideal224
for metabolomics analysis. Variations in sample handling, storage times, and even changes in laboratory225
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protocols, such as the switch from FC to FX sample tubes, introduce experimental noise and batch effects226
that can obscure true biological signals.227

Data were fully anonymized prior to analysis. Untargeted metabolomics was performed with UHPLC-228
QTOF across 394 batches. Peak picking was performed with XCMS and allowed the identification of229
12,686 features, excluding those with >20 %missing values per batch.230

For further details on the LCMS details, please see Telving and Andreasen (2016).231

DATA DECLARATION AND AVAILABILITY

All methods were carried out in accordance with relevant guidelines and regulations. All experimental232
protocols were approved by relevant Danish authorities.233

The data were provided by the Department of Forensic Medicine, Aarhus University but restrictions apply234
to the availability of these data, which were used under license for the current study, and so are not publicly235
available. Data are however available from the authors upon reasonable request and with permission of236
Department of Forensic Medicine, Aarhus University.237
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