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ABSTRACT2

High-dimensional data, frequently encountered in metabolomics studies, often presents3
challenges for traditional statistical analyses due to the "curse of dimensionality" and the presence4
of technical noise and batch effects. These issues are particularly relevant in research on aging,5
where identifying reliable biomarkers from complex metabolic profiles is crucial. This study focuses6
on predicting chronological age from a large dataset of over 8,000 blood samples, originally7
collected for toxicological screenings from individuals suspected of driving under the influence of8
drugs. This unique dataset, while offering a large sample size, presents inherent challenges due9
to variations in sample handling, storage, and laboratory protocols.10

To address these challenges, we employ a fully connected neural network (FCNN) enhanced11
with feature selection using structured sparse ℓ1,∞ projection. This approach aims to extract the12
most informative features from the high-dimensional data while mitigating the impact of noise13
and batch effects. Our results demonstrate that the proposed FCNN model achieves a RMSE14
of 5.66± 0.07 years with only 4,983 features in predicting age, outperforming a standard FCNN15
with an RMSE of 5.78± 0.07 years. In particular, we find that a subset of 2, 694 features, selected16
through ℓ1,∞ projection, provides comparable predictive accuracy as 5.71± 0.07 to utilizing the17
full set of features. This finding underscores the effectiveness of our feature selection method in18
identifying the most important metabolic signals for age prediction.19
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INTRODUCTION

The study of human aging has attracted significant attention due to its implications for the extension of21
healthy lifespan. High Resolution Liquid Chromatography-Mass Spectrometry (HRLCMS) has emerged as22
a pivotal tool in aging research, enabling detailed analysis of metabolites that reflect the biochemical state23
of an organism. HRLCMS is particularly valuable for its high sensitivity and specificity in detecting a wide24
range of metabolites, which makes it indispensable for metabolomics studies aimed at understanding the25
aging process Liu et al. (2023).26

Recent advances have seen the integration of HRLCMS with machine learning (ML) techniques to27
develop accurate age-prediction models Reveglia et al. (2021). The ability to predict chronological age28
from metabolic data not only provides insights into the biological understanding of aging, but also holds29
the potential to identify individuals at risk of age-related diseases. For example, analyzing CSF samples30
from healthy adults revealed significant age-related changes in metabolites such as cysteine, pantothenic31
acid, and 5-hydroxyindoleacetic acid Liu et al. (2023). These findings suggest that metabolic dysregulation32
is a hallmark of aging and can be quantitatively assessed using HRLCMS.33

The integration of LC-MS and ML has led to significant advancements in the field of aging research.34
Studies have demonstrated that ML models can predict chronological age with high precision using35
metabolic profiles. For example, a study using data from the China Health and Retirement Longitudinal36
Study applied several ML algorithms, including Gradient Boosting Regressor and Random Forest, to37
develop a biological age measure that was significantly associated with physical disability and mortality38
Cao et al. (2021). Another study highlighted the use of ML to identify metabolic biomarkers for Alzheimer’s39
disease, showcasing the potential of these techniques in early disease detection and monitoring Reveglia40
et al. (2021).41

Lassen et al. previously modeled chronological age based on HRLCMS data from routine toxicological42
screenings of blood samples Lassen et al. (2023). These samples, while they present challenges in terms of43
experimental control and potential biases, provide a unique opportunity to investigate aging patterns within44
a large and diverse population.45

In this paper, we try to model chronological age using a specialized type of fully connected neural46
network (FCNN) with feature projections. We use the same training/test scheme as in the original study47
Lassen et al. (2023) and show how sparse projection in combination with fully connected neural networks48
increases the prediction accuracy of human chronological age.49

50

METHOD: REGRESSION USING A FULLY CONNECTED NEURAL NETWORK WITH
FEATURE SELECTION USING THE BILEVEL ℓ1,∞ PROJECTION

Deep neural networks have proven their efficiency for classification and feature selection in many domains,51
and have also been applied to omics data analyses Truchi et al. (2024); Chardin et al. (2022); Lassen et al.52
(2023).53
Let X be the concatenated raw data matrix (n × m) (n is the number of patients and m the number of54
metabolites). Y is the vector (n× 1) of the age of each patient. Let Ŷ be the encoded latent matrix (1× 1).55
W is the matrix of the weights of the linear fully connected neural network (FCNN).56
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Criterion57

The goal is to compute the network weights, W minimizing the regression loss. Moreover, to perform58
feature selection, as large datasets often present a relatively small number of informative features, we also59
want to sparsify the network, following the work proposed in Barlaud and Guyard (2020). Thus, instead60
of the classical computationally expensive Lagrangian regularization approach Hastie et al. (2004), we61
propose to minimize the following constrained approach introduced in Barlaud et al. (2017) in our Fully62
Connected neural Network (FCNN):63

Loss(W ) = ϕ(Ŷ , Y ) s.t. BP 1,∞
η (W ). (1)

Where Ŷ is the estimate age by the neural network, ϕ is the mean square error loss, and BP1,∞ is the64
bilevel ℓ1,∞ projection Barlaud et al. (2024).65

We compute the weights using gradient with Adam method Kingma and Ba (2015). Note that low values66
of η imply high sparsity of the network. We use the double descent algorithm Barlaud and Guyard (2021).67

68

Feature selection using the bilevel ℓ1,∞ projection Barlaud et al. (2024)69

The ℓ1,∞ projection is of particular interest because it is able to set a whole set of columns to zero70
Bejar et al. (2021); Perez et al. (2023), instead of spreading zeros as done by the ℓ1 norm. This makes it71
particularly interesting for reducing computational cost. However, the complexity of this algorithm remains72
an issue. The time complexity of this algorithm is O

(
nm ∗ log(nm)

)
for a matrix in Rn×m. Note that the73

complexity of the algorithm Perez et al. (2023) is, O
(
nm+ J ∗ log(nm)

)
where J is a term that tends to 074

when the sparsity is high and n×m. when the complexity is low.75
76

The detailed propositions and algorithms for three bilevel projections ℓ1,∞, ℓ1,1 and ℓ1,2 were provided by77
Barlaud et al. in Barlaud et al. (2024). The complexity of the bilevel algorithm is only O

(
nm

)
. The code78

is available online1 Note that the bilevel ℓ1,1 projection was used in single cell classification and feature79
selection Truchi et al. (2024). We propose here to use the bilevel ℓ1,∞ projection Barlaud et al. (2024).80

An evaluation metric using the Wasserstein distance81

RMSE and MAE are classical metrics for regression evaluation. Here, we introduce the Wasserstein82
distance (or Kantorovich–Rubinstein metric) as another approach for the evaluation of regression results.83
The optimal transport problem or earthmover’s distance was first formalized by Gaspard Monge in 1781.84
The Wasserstein distance is a natural way to compare the probability distributions of two variables and has85
been extensively used in the last decade in many machine learning applications Courty et al. (2016); Cuturi86
and Peyré (2018)87

88

1 https://github.com/MichelBarlaud/SAE-Supervised-Autoencoder-Omics
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RESULTS

Preprocessing of data89

Rather than using the PCA as done in the original study Lassen et al. (2023), we used the Local Outlier90
Factor (LOF) developed by Scikit-learn 2. This method is more robust for identifying outliers, helping to91
isolate samples that deviate significantly from the majority. We fine-tuned the parameter to achieve the best92
results using the train split of the data before removing outliers from the full dataset.93

94

After outlier removal, we log-transformed the data followed by a scaling (mean=0, standard deviation=1).95
After the preprocessing feature and sample preselection, our dataset was composed of 8,038 features and96
8,099 samples.97

Performance estimation98

We train and estimate performance using the classical cross-validation of 90% of the data ("train set"),99
8,184 samples, and we use the remaining 10% of the data, 815 samples, as external validation ("Final test")100
(See Figure 1) and 3.101

Figure 1. Train-Test-validation scheme

We train and estimate performance using the classical cross-validation of 90% of the data ("train set")102
and we use the remaining 10% of the data as external validation ("test set") (See Fig 1 4).103

In the cross validation, we opted for a 4-fold cross validation, which means that we have 6,138 samples104
for the test and 2,046 samples for the train, each with 8,038 features. We trained a fully connected neural105
network using 2 seeds and the 4 folds. Testing on 2 seeds provided a more accurate overview of the model’s106
statistical behavior, with all means and standard deviation computed over 8 folds.107

2 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
3 https://github.com/NolwennPeyratout/FCNN-Age
4 https://scikit-learn.org/stable/modules/cross_validation.html
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During training, we carefully tuned the impact of each parameter on model performance, including the108
SiLU activation continuous function, the batch size, and the learning rate. The best size of the three hidden109
layers of the fully connected neural network was set to n = 300 using cross validation.110
Thus, the matrix modeling the connection between the first layer and the second layer has a size of111
n = 300×m = 8038. The feature selection is done with the ℓ1,∞ projection applied to the first matrix. To112
remain consistent with this modification, we apply the projection on all the layers. We tune the parameter η113
of the projection in order to select features.114
To avoid any leakage from test data to any test performance we split the data into a training and test split115
(9:1). All models were only using the training data to fit and evaluate model performance before finally116
being evaluated in the test set.117
After initial outlier removal the dataset contained 8,099 samples with 8,038 features.118

Model parameter influence on cross-validation performance119

Using 4-fold cross-validation in the training data, we found the optimal number of features to be 5000 2120
with an RMSE of 5.75 years. Evaluating performance in the test set resulted in the same general pattern,121
but an overall lower RMSE (5.66 at 5000 features).122

Using mean absolute error gave slightly different results (3). While the cross-validation in the training123
data showed a minimal MAE at 5000 features, the test set showed a low MAE already at 2,500 features.124

125

Metrics results of the CV test using our FCNN with the bilevel ℓ1,∞ projection, as a function of the126
number of selected features. The line show the results using either cross-validation of the training set127
(blue) or test set (orange).128

Figures 2 and 3 show that selecting only about 5,000 features ensure a RMSE of 5.75 years (cross129
validation) and an RMSE of 5.66 years (test set). For the MAE, we have a similar result, with 4.29130
years using cross-validation and 4.25 with the test set. Surprisingly, the results of the test set showed131
a low MAE already at 2,500 features where the RMSE indicated 5,000 features to obtain the best prediction.132

133

These loss distances curves, RMSE or MAE distance, as a function of the number of features, are convex.134
Therefore, this optimization requires a trade-off between error loss and the number of features. Note that it135
is the same trade-off to rate-distortion in lossy data compression Yochai and Michaeli (2019).136

137

We also used an alternative metric, the Wasserstein distance between the true age distribution and the138
predicted age distribution. We compare it for several values of η, in order to find the best value. The theory139
is explained in . This metric measures the similarity between two distributions; in this case, we use it to140
assess the similarity between the true and predicted distributions. For our numerical evaluation, we use the141
metric provided by SciPy: 5.142

The figure 4 shows that contrarily to previous RMSE and MAE curves, the Wasserstein distance provides143
an evident minimum for 2500 features for the cross-validation results and showed similar results for the144
test set.145

146

5 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
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Figure 2. RMSE results

Thus, we conclude that using 2500 features is the best trade-off for RMSE and Wasserstein optimization.147
This conclusion is promising, indeed, we only need to compute the model with a third of the database to148
obtain good results. As a result, the computational cost of this learning is lower.149

150

Figure 5 show the distribution of observed and predicted age from the cross validation results using 2,500151
(A) and 5,000 (B) features. Both models underestimate the youngest and oldest samples. The dataset has152
an age bias, with a majority of samples being around 22 years old and a strong skew and results in a biased153
model that systematically underpredicts older samples.154

The is also seen in figure 6 which reports the mean and standard deviation of predicted age during the155
final test, with 815 samples, with the best model of the cross validation. The color provides the sample156
size per year. First, we can not find any difference between 2,500 features and 5,000. Choosing only 2,500157
features do not decrease the performance of the model. As discussed, the model has a bias of systematically158
predicting older individuals (over 30 years) to be younger than they are. This finding was also discovered159
with the study of the original paper, Lassen et al. (2023). Therefore, it could be explained by the fact that160
we have a clear sample’s majority of 22 years old, and we also have few samples with more than 50 years old.161

162
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Figure 3. MAE results

A first approach to deal with this phenomenon could be to apply weights to very present samples163
to counterbalance the over-representation of young samples. In another point of view, this outcome is164
mathematically well known, and a possible solution to cope with this issue would be to minimize the165
Wasserstein distance Mohajerin Esfahani and Kuhn (2018). However, the minimization of the Wasserstein166
distance is still a hard topic out of the scope of this paper.167

168

Projection comparison169

Using two independent 4-fold cross-validations in the training set, we found that the bilevel FCNN170
method with projection outperformed the classical FCNN (without projection) across all metrics (Table171
1) using both 2500 or 5000 features. Projection reduced the RMSE by 0.07 years when using 2,500172
features compared to the classical method. Moreover, the bilevel projection with 2,500 features improved173
the Wasserstein Distance by 0.28 compared to the classical approach. This improvement applies not only174
to the performance, but also to the number of required features, as only 31% of the features are required.175
This reduction is significant for calculation costs, as it enables the gradient descent computation on 31%176
fewer neurons in the first layer.177

178
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Figure 4. Wasserstein distance on the CV test and the 10% test using our FCNN with the bilevel ℓ1,∞
projection, as a function of the number of selected features

Figure 5. FCNN Bilevel distribution using a kernel method (bw=0.4) with 2500 and 5000 features of the
Cross validation test set

Mean RMSE
CV test

Mean RMSE
test

Mean WD
CV test

Number of
features

FCNN Bilevel ℓ1,∞ 5.81 ± 0.11 5.71 ± 0.09 1.32 ± 0.04 2,694
FCNN Bilevel ℓ1,∞ 5.75 ± 0.1 5.66 ± 0.06 1.48 ± 0.09 4,983

Classical FCNN 5.85 ± 0.09 5.78 ± 0.04 1.50 ± 0.06 8,038

Table 1. Train-validation test, RMSE and WD (Wasserstein distance); Comparison of methods and
parameters for age estimation

In figure 7, we compare the predicted age as a function of the real age for both 2,500 selected features179
and the model without projection. We can not distinguish a difference between the two figures, suggesting180
that both neural networks exhibit similar bias for older ages. This observation implies that minimizing the181
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Figure 6. FCNN Bilevel distribution on the test set with the best fold. Left: using 2,500 features; Right:
using 5,000 features

MSE may not solve the bias issue effectively. An alternative approach to solve this problem, could be to182
minimize the Wasserstein distance, since we have founded a clear optimal minimum.183

Figure 7. Distribution on the test set with the best fold. Left: with projection (2,500 features), Right
without projection

Feature importance184

The bilevel ℓ1∞ projection is a structured projection, which means that certain feature weights are entirely185
set to zero. In figure 8 (left), the top fifteen features are ranked in descending order according to their186
normalized weights given by the Python library SHAP Lundberg and Lee (2017). This library computes187
the importance of each feature based on the learned weights of the neural network. We normalize these188
weights by the maximum value to determine the significance of each feature. We can distinguish a clear189
difference in feature’s weight between the first and the tenth features for both figures, but we do not have190
a distinct break. Additionally, the curve flattens as features become less important, showing that the top191
features, though not a precise number, are predominant.192
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Figure 8. Features Ranking: Left for FCNN with 2500 features, Right FCNN with 5000 features

In figure 8 (right), features are normalized by the maximum value, as done previously. The ranked weights193
reveal the top discriminating metabolites, which can be interpreted as a perturbation signature. The major194
difference between the two figures is that, for the same top three features, the normalized weights given by195
SHAP for 2,500 features are slightly lower than those with 5,000 features, which may suggest as a less196
reliable top three. Note that the slope using bilevel ℓ1∞ projection will give us a less flat curve compared to197
a classical deep neural network, resulting in a well-marked top features.198

FCNN Bilevel 2500 FCNN Bilevel 5000 Original paper
M250T142 M250T142 M250T142 [4-O-Dimethylallyl-tyrosine]
M211T219 M211T219 M211T219 [Cyclo(leu-pro)]
M170T102 M170T102 M170T102 [2,3-Dihydrodipicolinate]
M344T54 M344T54 M255T346 [18-Nor-4(19),8,11,13-abietatetraene]
M364T323 M176T211 M260T236
M456T83 M364T323 M257T356
M513T373 M509T442 M176T211
M176T211 M513T373 M469T561
M359T21 M212T206 M521T504
M345T55 M456T83 M220T196

Table 2. Top 10 features in descending order of weight. Features found in across all three lists are
highlighted in red. Features found in across all the first two are highlighted in blue.

To establish a more accurate comparison of the identified features, we constructed a table (Table 2)199
showing the top ten features discovered in our FCNN using 2,500 and 5,000 features, alongside those200
identified in the original study Lassen et al. (2023). The top three metabolites appear in identical ranks201
across both studies, meaning they converge on the same result and one additional feature (M176T211) is202
also shared across all three (highlighted in red). Three additional features (highlighted in blue) are shared203
between the two projection networks, showing the reliability of this approach with different value of η.204
Feature importance is very high for a few features, but decrease and flattens out really fast (figure 8). Many205
features will thus have similar importance (around 0.4) and may change rank between runs. It was only206
possible to annotate the first four features in the original paper.207

Frontiers 10



Peyratout et al.

DISCUSSION

In summary, we find that the ℓ1,∞ projection improves prediction results and use fewer features than the208
original paper Lassen et al. (2023). The use of the ℓ1,∞ reduces the number of features during learning and,209
consequently, the computational cost with no loss of performance for this dataset. The ℓ1,∞ projection is210
particularly advantageous over the classical ℓ1 projection, as it selects entire columns, and thus relevant211
features, rather than isolated points within the matrix. As a result, learning with the ℓ1,∞ projection removes212
noisy features while improving RMSE, MAE and Wasserstein distance compared to the classical fully213
connected neural network.214

215

Throughout this study, we observed a bias with younger samples being over-predicted and older samples216
being under-predicted. A possible extension of this study it to implement the Wasserstein distance as an217
alternative loss function for the network fitting. Here, we only employed the MSE loss and checked the218
Wasserstein distance as a performance metric when tuning the parameter η that controls the regularization.219
However, this topic involves complex optimal transport theory, which falls outside the scope of this paper.220

221

The bilevel ℓ1,∞ projection has already proved its efficiency in single cell application Truchi et al.222
(2024); Barlaud et al. (2024). In these case, the projection selected a limited number of selected features223
(hundreds) and provides a large accuracy improvement by 10% compared to standard network. Even224
though metabolomics and single cell gene expression data are quite different, our results show that the225
projection seem to be beneficial in both cases. This calls for further testing of the ℓ1,∞ projection in other226
high-dimensional biomedical datasets, to see if in the projection approach generally performs better or on227
par with existing state-of-the-art methods.228

According to the outcomes obtained with the RMSE and the Wasserstein distance in our metabolomic229
application, the ℓ1,∞ projection provides a limited selected feature, around 30%, which correspond to230
2,500 selected features. This led to moderate improvements in RMSE or MAE, but a more substantial231
improvement in the Wasserstein distance.232

233

The features selection results should be interpreted with caution, in fact, the data is from drivers suspected234
of driving under the influence of drugs. The features found may therefore have been influenced by drugs235
intake and may only be relevant within the context of this dataset.236

237

Samples238

The dataset as described in Lassen et al. (2023) consist of blood samples collected from drivers suspected239
of drug-impaired driving between January 2017 and December 2020. The cohort is 93% male, with a mean240
age of 28.9 ± 9.2 years, and a skewed age distribution.241

The dataset presents different challenges; the samples were not collected under controlled conditions ideal242
for metabolomics analysis. Variations in sample handling, storage times, and even changes in laboratory243
protocols, such as the switch from FC to FX sample tubes, introduce experimental noise and batch effects244
that can obscure true biological signals.245
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Data were fully anonymized prior to analysis. Untargeted metabolomics was performed with UHPLC-246
QTOF across 394 batches. Peak picking was performed with XCMS and allowed the identification of247
12,686 features, excluding those with >20 %missing values per batch.248

For further details on the LCMS details, please see Telving and Andreasen (2016).249

Data declaration and availability250
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