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Université de Nice - Sophia Antipolis Swiss Federal Institute of Technology, Lausanne

2000 route des Lucioles - F-06903 Sophia-Antipolis FRANCE CH-1015 Lausanne EPFL, SWITZERLAND

Phone: +33 (0)4 92 94 27 32, Fax: +33 (0)4 92 94 28 98 Phone: +41 21 693 51 85, Fax: +41 21 693 37 01

{Frederic.Precioso, Michel.Barlaud}@i3s.unice.fr {Thierry.Blu, Michael.Unser}@epfl.ch

Abstract— This paper deals with fast image and video seg-
mentation using active contours. Region based active contours
using level-sets are powerful techniques for video segmentation
but they suffer from large computational cost. A parametric
active contour method based on B-Spline interpolation has been
proposed in [26] to highly reduce the computational cost but
this method is sensitive to noise. Here, we choose to re-lax the
rigid interpolation constraint in order to robustify our method
in the presence of noise: by using smoothing splines, we trade
a tunable amount of interpolation error for a smoother spline
curve. We show by experiments on natural sequences that this
new flexibility yields segmentation results of higher quality at
no additional computational cost. Hence real time processing for
moving objects segmentation is preserved.

I. INTRODUCTION

We address the problem of image and video segmentation
using region-based active contours. The goal is to extract
image regions corresponding to semantic objects. Image and
Video segmentation can be cast in a minimization framework
by choosing a criterion which includes region and boundary
functionals. Boundary functionals were first proposed by Kass
et al. [21] and geodesic active contours by Caselles et al. [3],
[4] for active contour segmentation. Region-based active con-
tours were first introduced by Ronfard et al. [30] and Cohen
et al. [10]. Chakraborty et al. [5] combined both boundary
and region information for medical images segmentation. Then
Chesnaud et al. [9], Chan et al. [6], Zhu et al. [35], Paragios
et al. [24] and Debreuve et al. [12] introduce region-based
statistic descriptors for image or video segmentation. Jehan-
Besson et al. [17], [20] address the segmentation problem
where features of the region to be segmented are embedded
in region functionals. In this framework, Gastaud et al. [13]
propose a new approach introducing shape prior. This method
uses a variational approach as opposed to previous work on
shape prior, based on probabilistic methods [11]. The shape
prior allows free form deformation [13] and is not restricted
to a parametric deformation as in [8].

All these contour or region-based methods use a level-set

approach which is accurate but time consuming. In this paper,
we propose a parametric active contour evolution based on a
cubic spline contour [2].

In Section 2, we present a survey of the region-based
criterion, the derivation of the criterion and computation of
the velocity vector.

In Section 3, we propose a cubic B-spline implementation.
Cubic B-splines preserve C2 regularity and have excellent
approximation properties [32] which means that, for a given
accuracy, fewer samples are needed than with other parametric
methods; moreover, fast algorithms are available for B-splines,
which greatly reduces the computation cost.

Unfortunately, interpolation methods are not robust to noise.
This is why we propose to use smoothing splines [33] in
the B-spline interpolation approach of [27]. These curves
preserve the implementation advantages as the B-splines while
softening the interpolation constraint. The relaxation of the
interpolation condition is traded for an optimal increase of
the smoothness of the spline snake. A smoothness parameter
controls the amount of relaxation.

In Section 4, we compare the influence of the smoothing
spline parameter with the curve-length regularization coef-
ficient. Finally, we show some experiments on real video
sequences.

II. REGION-BASED ACTIVE CONTOURS

A. Criterion and velocity
Let us define a general segmentation criterion. For each

frame of the sequence, we search a background region Ω out,
and object regions Ωin with a common boundary Γ (Fig. 1).
Thus the criterion includes both region and boundary func-
tionals:

J(Ωout, Ωin, Γ) =

∫
Ωout

kout(Ωout) dσ +

∫
Ωin

kin(Ωin) dσ

︸ ︷︷ ︸
Region terms

+

∫
Γ

β ds

︸ ︷︷ ︸
Boundary term

(1)
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Fig. 1. Domain definition

In this criterion , kout is the descriptor of the unknown
background domain Ωout, kin is the descriptor of the unknown
object domain Ωin and β is the weight of the regularization.

Since we use statistical descriptors (for kin and kout) such
as mean, variance or region histogram, the entropy descriptors
are globally attached to the region Ω [9]. In the variational
Eulerian method proposed by Jehan-Besson et al. [20] for
a region-based active contour segmentation, the authors in-
troduce a dynamical scheme (shape gradient method) in the
criterion. Hence regions become continuously dependent on
an evolution parameter τ .
The criterion J(Ωout(τ), Ωin(τ), Γ(τ)) is denoted by J(τ).
Thus the computation of the derivative provides:

J ′(τ) =
∫

Ωout(τ)

∂kout

∂τ
dσ +

∫
Ωin(τ)

∂kin

∂τ
dσ

︸ ︷︷ ︸
(a)

+
∫

Γ(τ)

( kout − kin )(v.N) ds

︸ ︷︷ ︸
(b)

+
∫

Γ(τ)

( −β.κ + ∇β.N)(v.N) ds

︸ ︷︷ ︸
(c)

(2)

where κ is the curvature of the contour, v is the velocity of
Γ(τ) and N is the unit inward normal to Γ(τ).

The terms (a) are deduced from the variation of the
descriptors with the region. The term (b) is deduced from the
variation of the region. And the classical term (c) comes from
the derivation of the Boundary term in (1) [4]. Complete
proofs are available in [17], [19], [20].

The active contour Γ(τ) evolves from an initial position
Γ(0) towards the object with a velocity v in the direction of
N, the inward normal vector of the active contour:{

∂Γ(τ)
∂τ = vN

Γ(0) = Γ0
(3)

The velocity expression is deduced from the derivative (2):

v = A + kin − kout + βκ (4)

• A represents local terms which are computed from the
two first terms (a) in (2). In Section 4, we will detail

the expression of A and then the velocity v for two
applications: segmentation of homogenous regions and
segmentation of moving objects.

• β is a constant.

B. Implementation

Region-based active contour evolution can be implemented
in two different ways:

• Implicitly, based on the level-set approach [23], [19],
[20]. Such a method provides an implicit management
of topological changes and yields accurate results, but it
suffers from a high computational cost.

• Explicitly, using active parametric contours. Such a
method reduces the computational cost substantially and
provides a complete control of the data size. The accuracy
of the results is dependent on the noise level of the
sequence. Using smoothing splines is likely to introduce
robustness in this method.

III. TOWARDS CUBIC SMOOTHING SPLINES

A. Cubic Spline Interpolation

The evolution velocity is now computed only at sampling
points along a spline active contour. Cubic spline curves are
parametric curves S(t) = (x(t), y(t)) where x(t) and y(t)
are cubic polynomials on each segment tk ≤ t ≤ tk+1,
and are smoothly (twice continuously differentiable) connected
between segments. Here, we assume that there are n such
segments parametered by t0, t1, . . . tn−1 with the assumption
tn = t0, and that we are given the n sampling points Pk =
S(tk).

Each segment tk ≤ t ≤ tk+1 is expressed as a cubic
polynomial [1]:

S (t) = Qk−1B
3
k−3 (t) + QkB3

k−2 (t)
+ Qk+1B

3
k−1 (t) + Qk+2B

3
k (t) (5)

B3
k (t) is a nonuniform B-spline function; the n parameters

of the model are the B-spline coefficients Qk called control
points. These coefficients can be specified by solving for Qk

the n equations S(tk) = Pk.
The B-spline function B3

k (t) is a piecewise cubic polyno-
mial that depends on the n values tk of the curve parameter
at the sampling points.

Irregular sampling of t is intuitively more pertinent, as
regards active contour propagation, than uniform sampling.
This is the option chosen by, e.g., Pottmann et al. [25] and
Yang et al. [34], who propose to optimize the parameterization
of the spline curve for approximating a target curve, as well
as in other approaches based on arbitrary parameterizations
(chord length, centripetal, Foley, ...). However, building the
nonuniform spline curve requires the computation of n dif-
ferent polynomials B3

k which is time consuming. To over-
come this problem, we have proposed a regular sampling
approach [27],i.e. tk = k, to represent the active contour using
uniform B-spline functions. In that case, after reparameterizing
the curve, the B-spline function B3

k(t) is independent of the
segment considered on the curve. We can write B 3

k(t) =
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β3(t − k) where the centered B-spline of degree 3, β 3(t),
is a bell-shaped, symmetrical function, as shown on Fig. 2,
defined by:

β3(t) =




2
3 − |t|2 + |t|3

2 , 0 ≤ |t| < 1
(2−|t|)3

6 , 1 ≤ |t| < 2
0 , 2 ≤ |t|

(6)

Fig. 2. Centered B-spline of degree 3

The arc equation (5) with (6) becomes [1]:

S (t) =
(
−1

6
Qk−1 +

1
2

Qk − 1
2

Qk+1 +
1
6

Qk+2

)
t3

+
(

1
2

Qk−1 − Qk +
1
2

Qk+1

)
t2

+
(
−1

2
Qk−1 +

1
2

Qk+1

)
t

+
1
6

Qk−1 +
2
3

Qk +
1
6

Qk+1

for t ∈ [k, k + 1] (7)

The computation cost of regular sampling is lower than
handling a specific equation for each segment tk ≤ t ≤ tk+1

of a nonuniform B-Spline curve.
Moreover, the control points Qk can be obtained from the

sampling points Pk using a fast filtering algorithm when the
curve parameter is sampled uniformly (see Appendix I).

Indeed, each interpolated point Pk corresponds to the
polynomial expression value S (t) when t = k. From the
expression (7) we obtain the relation between sampling points
Pk and control points (B-spline coefficients) Qk:

S (k) = Pk =
1
6

(Qk−1 + 4Qk + Qk+1) (8)

This relation can be written as a convolution:

Qk = (B3
1)−1 ∗ Pk (9)

where B3
1 is the discrete cubic B-spline kernel.

The inverse convolution operator is defined by:

B3
1(z)−1 =

6
z + 4 + z−1

(10)

Using the prefiltering approach exposed in [33], the inverse
convolution operator (B3

1)−1 is computed efficiently from
a cascade of first order causal and anti-causal recursive
filters (see details in Appendix I). The control points Qk are
computed from sampling points Pk using this fast filtering
algorithm.

Cubic splines provide good interpolation accuracy at low
computational cost [32]. Moreover these curves have several
interesting properties: They are twice continuously differen-
tiable, which allows to build a C2-regular curve. Thus the
normal vector and the curvature, involved in the velocity
equation, can be computed exactly at every sampling point.
In addition, such curves minimize the following criterion:∫

Γ

‖C′′(t)‖2dt (11)

under interpolatory constraints [31]. Here C(t) = (x(t), y(t))
is a parametric description of the curve Γ, and C ′′(t) the
second derivative of C(t) w.r.t. t; this functional is actually
very close to the (squared) curvature κ2 when the parameter
t is close to the curvilinear abscissa, as shown in [16].

Although we have obtained real time accurate results with
an implementation based on these B-spline curves [26], inter-
polation is not robust enough in the presence of noise. Thus
we propose to use a less constrained approximation method;
namely, the smoothing spline method [28].

B. Cubic Spline Approximation

A smoothing spline is an approximation curve controlled by
a parameter trading interpolation error for smoothness [29]. It
minimizes the following criterion:∫

Γ

‖C′′(t)‖2dt +
1
λ

∑
(Pk − Ck)2 (12)

where the Pk’s are the measured data points and Ck’s are
points, on the curve, joining of polynomial pieces.

The result is still a cubic spline, but it does not satisfy
anymore the interpolation condition exactly. The interpolation
error has been converted into increased smoothness—smaller
energy of the second derivative.

The first term of (12) can be developed as:

‖C′′‖2 =
|x′x′′ + y′y′′|2

x′2 + y′2 +
|x′y′′ − x′′y′|2

x′2 + y′2

=
∣∣∣∣ d

dt

√
x′2 + y′2

∣∣∣∣
2

+ (x′2 + y′2)
∣∣∣∣ d

dt
arctan

( y′

x′
)∣∣∣∣

2

= s′′2 + s′2φ′2

where s is the curvilinear abscissa of the curve Γ, and φ(t) is
the angle of the tangent to the curve at C(t). This shows that
the smoothing part in (12) can be rewritten as a sum of two
positive terms:∫

Γ

‖C′′(t)‖2dt =
∫

Γ

s′′2(t)dt +
∫

Γ

s′2(t)φ′2(t)dt (13)



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2-SEGM 4

Thus the decrease of
∫
Γ
‖C′′(t)‖2dt facilitates the decrease of∫

Γ
s′′2(t)dt and

∫
Γ

s′2(t)φ′2(t)dt:

• the first term of (13) represents the average variation of
curvilinear abscissa. Thus decreasing this term tends to
improve the curve sampling uniformity;

• when the sampling is nearly uniform—i.e., s ′(t) ≈
Constant, which is favored by the decrease of the first
term—the second term of (13) is lower bounded by the
square of (using Cauchy-Schwartz inequality)

length(Γ)
(# control points)3/2

∫
Γ

|φ′(t)| dt

which is the average tangent angle variation over the
curve. Preventing this quantity from being large also
prevents loops in the curves. This is because each loop
increases the value of

∫
Γ |φ′(t)| dt by π at least.

1 1.5 2 2.5 3

x
0

1

y

0
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0.2

0.3

0.4
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0.6

0.7

lambda

Fig. 3. Evolution from Cubic Spline interpolation (λ = 0) towards Cubic
Smoothing Spline approximation (λ = 0.7)

Fig. 3 shows the evolution of a cubic spline curve, based on
10 data points, from regular interpolation (for λ = 0) towards
a smoothing spline approximation (for λ = 0.7). This figure
shows that loops are avoided as the smoothness parameter λ
increases.

In Fig. 4 and Fig. 5, we have plotted the variance of the
curvilinear abscissa

∫
Γ

s′′(t)2 dt and the interpolation error of
smoothing splines as functions of the smoothness parameter
λ.

The curve in Fig. 4 confirms that the interpolation error
increases slightly with λ. Indeed, the amount of missclassified
pixels, between the smoothing spline segmentation and a
segmentation of reference, increases with λ but only up to
1.6% of the size of the object.

Fig. 5 shows that, on the contrary, the curvilinear abscissa
variance decreases with λ.

The relation between sampling points Pk and control points
Qk (B-spline coefficients) can be written as a convolution:

Qk = (S3
λ)−1 ∗ Pk (14)

with

S3
λ(z)−1 =

6

z + 4 + z−1 + 6λ(z−2 − 4z−1 + 6 − 4z + z2)
(15)

Fig. 4. Accuracy decreases slightly with λ

Fig. 5. Sampling uniformity increases with λ

This transfer function is factorized into a product of causal
and anticausal responses:

b

λ
· 1
1 + az−1 + bz−2

· 1
1 + az + bz2

(16)

where a = −(z0 + z1) and b = z0z1 are real quantities
obtained from the two poles z0 and z1 of S3

λ(z)−1 that are
inside the unit circle. This prefiltering approach provides an
efficient method to compute the smoothing spline coefficients
(see details in Appendix II).

The positive parameter λ quantifies the tradeoff between
interpolation error and regularity. For λ = 0, no interpolation
error is allowed and thus, we get interpolating splines. When
λ increases, a larger amount of interpolation error is allowed,
hence the spline snake is smoother and its sampling more
regular. We show in the next section the benefits of this new
approach for the segmentation of noisy images.

IV. SEGMENTATION OF NOISY DATA

In this section, we present results of segmentation of static
images and segmentation of video sequences. We compare
the respective influence of the smoothing spline parameter
λ and the contour length regularisation parameter β on the
segmentation quality. We first show results of a segmentation
based on a homogeneity criterion.



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2-SEGM 5

A. Segmentation of Homogeneous Regions

1) Grayscale still images: In this example, the images are
osteoporosis medical images1. The goal is to segment bone
regions in the image. We consider the functional (1) where
kout and kin are descriptors of the bone homogeneity. The
region homogeneity is characterized by a function of the
variance of luminance intensity. Let σ2

out and µout represent
respectively the variance and mean of Ωout(τ), σ2

in and µin

represent respectively the variance and mean of Ω in(τ), and
Φ(r) a positive C 1 (R) function, for instance Φ(r) = log(1 +
r2).
Thus the criterion to be minimized is:

J(Ωout, Ωin, Γ) =
∫

Ωout

Φ(σ2
out) dσ +

∫
Ωin

Φ(σ2
in) dσ

+
∫

Γ

β ds (17)

where β is a positive constant.

Using (2), the derivative of the functional J with respect to
τ is:

J ′(τ ) = −
∫

Γ(τ)

[
Φ(σ2

in) − Φ(σ2
out) + βκ

+ Φ′(σ2
in)

[
(I − µin)

2 − σ2
in

]
− Φ′(σ2

out)
[
(I − µout)

2 − σ2
out

] ]
(v.N) ds (18)

where κ is the curvature of the contour and β is a constant.

More details and proofs are available in Jehan-besson et
al. [19]. In order to find a local extremum of the criterion (17),
as the authors proposed, we evolve a curve using the steepest
descent method. Thus, we obtain the following evolution
equation:

∂Γ(τ)
∂τ

= v.N

Thus the expression (4) of the velocity v is known:

v = Φ(σ2
in) − Φ(σ2

out) + βκ

+ Φ′(σ2
in)

[
(I − µin)2 − σ2

in

]
− Φ′(σ2

out)
[
(I − µout)2 − σ2

out

]
(19)

This velocity makes the B-spline active contour evolve
towards the minimum of the energy criterion (17). Thus the
competition between the region inside the contour Ω in(τ) and
the region outside Ωout(τ) leads to increase the homogeneity
of both regions. However the images are corrupted by acquisi-
tion noise and by the noise of non-bone tissues (muscles, fat,
. . . ).

Fig. 6 shows the convergence using the cubic spline
interpolation with length penalty method. The length penalty
provides smoothness to the contour. However the acquisition
noise corrupts the segmentation quality in the area of interest
for osteoporosis diagnostic. The smoothness of the contour
depends only on the length penalty parameter β.

1Thanks to DMS for providing osteoprosis-images

Fig. 7 shows the convergence using the new smoothing
spline method. The flexibility of the smoothing splines
provides an accurate bone segmentation without being
corrupted by the noise. The smoothness of the contour
depends only on the smoothing spline parameter λ.

Fig. 8 shows the robustness of the new smoothing spline
method regarding λ parameter variations. Between the left
and the right picture on the top row, λ is only increased from
0 to 0.01 (Fig. 8(a) and Fig. 8(b)), but still the accuracy of
the segmentation is highly improved and the most efficient
results are almost reached. If we increase again λ ten times,
up to 0.1, (Fig. 8(c)), the segmentation is smooth but still
very good. By increasing λ ten times (Fig. 8(d)), the contour
is too smooth but remains robust. Additional experiments
with λ = 10 and 100 indicate that even if the contour is
too smooth to preserve a sufficient segmentation accuracy,
the structure of the contour remains stable which is not true
with variations of β, the weight on the length penalty. Such
relative robustness of the snake with respect to λ suggests
that we can determine a range for standard values of this
parameter. This first experiment provides a range of [ 0.1 , 1 ].

The contour is sampled with 512 knots and the size of
the image is 512 × 512. The segmentation is obtained in 25
seconds with a Pentium IV at 2.6 GHz. It has to be pointed out
that most of this computation time is spent in evaluating the
variance of the object domain and of the background. Indeed
segmentations with 256 and 128 knots, obtained in 24 seconds,
confirm it: the cost of the approximation amounts to a few
percents of the full computation.
To improve the computation time of our algorithm with such
descriptors based on area moments (mean of the intensity,
variance, ...), a perspective would be to implement the method
of Jacob et al. [15] for an exact computation of the area
moments of spline curves.

2) Color Video Sequences: As detailed by Jehan et al.
in [19], [20], the homogeneity in color images is related
to the determinant of the covariance matrix for Gaussian
distributions.
Yezzi et al. [22] and Herbulot et al. [14], extended this
framework to the more general case of Entropy descriptors
without Gaussian distribution hypothesis.

In these experiments, regions of interest are regions of
homogeneous color, like the face on the sequence Erik. The
color images are in the RGB color space. Let us define the
joint probability distribution

q(IR(x), IG(x), IB(x), x ∈ Ω)

and the joint entropy, between the three channels of the image,
on the domain Ω:

HRGB(Ω) = −
∫

Ω

q(IR(x), IG(x), IB(x), x ∈ Ω)

ln q(IR(x), IG(x), IB(x), x ∈ Ω) dx (20)

The segmentation of homogeneous regions of a color video
sequence is achieved by region competition between the
background Ωout and the object Ωin, minimizing the following
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Fig. 6. Regular spline segmentation with λ = 0 and length penalty β = 10

Fig. 7. Smoothing spline segmentation with λ = 0.08 and β = 0

criterion:

J(Ωin, Ωout, Γ) = HRGB(Ωin) + HRGB(Ωout) +

∫
Γ

βds (21)

Thus, applying DREAMS method [20] to (21), the evolution
equation based on the joint probability distributions is [14]:

∂Γ

∂τ
(x̃) =[

− q(IR(x̃), IG(x̃), IB(x̃), Ω)(ln q(IR(x̃), IG(x̃), IB(x̃), Ω) + 1)

− 1

| Ω |
(
HRGB(Ω) − 1

+

∫
Ω

K(IR(x) − IR(x̃), IG(x) − IG(x̃), IB(x) − IB(x̃))

ln q(IR(x), IG(x), IB(x),Ω)dx
)]

N (22)

where

K(x, y, z) =
1

2πσ2
exp−x2 + y2 + z2

2σ2
(23)

is the Gaussian kernel involved in the Parsen window method.
Fig. 9 shows the evolution of the curve and Fig. 10 the

segmentation of some frames of a sequence.
The data extracted from the histogram evolution are very

sensitive to noise. This is why we use a smoothing B-spline
approach which combines a very low computational cost and

a global robustness to noisy data. The parameter λ = 0.1 is
in the standard range determined in the previous experiment,
i.e., [ 0.1 , 1 ].

B. Moving Objects Segmentation

Now, we present results obtained for the segmentation of
moving objects in video sequences. This segmentation is
based on motion detection. Our method is applied to the
real “coastguard” video. The goal is to detect the boat of
the coastguards in the sequence. We consider the functional
(1) where kin and kout are respectivelly descriptor of moving
objects and descriptor of the background. The descriptors have
to take into account the camera motion in this sequence. Thus
the criterion to be minimized is:

J(Ωout, Ωin, Γ) =
∫

Ωout

|In(σ) − Proj(In−1(σ))| dσ

+
∫

Ωin

α dσ +
∫

Γ

β ds (24)

where Proj(In−1(σ)) is the projection of the image In−1 onto
the referential of image In in order to compensate for the
motion of the camera. The camera motion model is based on a
6-parameter affine model. These parameters are computed with
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(a) Interpolation λ = 0 and β = 0 (b) Approximation λ = 0.01 and β = 0

(c) Approximation λ = 0.1 and β = 0 (d) Approximation λ = 1 and β = 0

Fig. 8. Robustness regarding Smoothing spline parameter λ variations

a robust estimation using motion vectors [7]. The motion field
is evaluated by a classical Block Matching algorithm between
frames In and In−1 [18]. β and α are two positive constants.

The descriptors are region-independent. Thus the local terms
of the differentiation (2) disappear and the velocity equation
(4) reduces to:

v = kin − kout + β κ (25)

Since the descriptor kout = |In − Proj(In−1)| is a temporal
gradient, this local term is noise sensitive.

In the “coastguard” sequence Fig. 11(a), the wake of the
boat behaves like noise for the background descriptor k out.
Thus the contour evolution equation is corrupted by noise.

Fig. 11(b) shows the results using the cubic spline interpola-
tion method [27]. The smoothness of the contour depends only
on the contour length regularization parameter β. However, the
foam in the wake of the boat is kept as part of the object.

Fig. 11(c) shows the results using the new smoothing spline
method proposed here. The smoothness of the contour depends
only on the smoothing spline parameter λ. Relaxing the rigid
interpolation constraint brings an obvious improvement: the
foam is not kept anymore, whereas the object is still reasonably
well-segmented.

This third experiment confirms the range of [ 0.1 , 1 ], we
determined, as standard values for the parameter λ.

Fig. 12 shows the computation time and the accuracy of
the segmentation on the “coastguard” sequence, for the 5
first images. The contour is sampled with 64 knots and the
size of the image is 352 × 288. The sequence is segmented
with a Pentium IV at 2.6GHz. The initial contour for the
first frame is given by the image boundaries. For the frames
2, 3, 4 and 5 the initialisation is provided by the final
contour in the previous frame. The object in the first frame
takes more time to be segmented because the initial contour
is ”far” from the object. For the other frames, the segmen-
tation is achieved in less than 0.40 second per frame (with
a Pentium IV at 2.6GHz). Thus, the whole segmentation
process should be 10 times faster to provide results in real
time. According to our knowledge, such a factor is not out of
reach by optimization for an industry expert.

We can thus say that the smoothing spline method provides
global robustness to noise-like data. The accuracy results on a
real video sequence show the improvement of our smoothing
spline method over a direct regularization of the segmentation
criterion.
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V. CONCLUSION

In this paper, we address the problem of image and video
segmentation by working out a new region-based method using
cubic smoothing spline active contours.

Instead of spline interpolation, we have chosen a smoothing
spline approximation because we want the method to be
more robust in the presence of noise. The smoothing spline
parameter λ provides a tunable tradeoff between interpolation
error and contour smoothness. Furthermore, increasing
the smoothing spline parameter λ improves the sampling
uniformity of the contour and avoids the presence of loops.
The structure of the contour remains stable to variations of this
parameter which is not true with variations of β, the weight
on the length penalty. The robustness of the active contour
with respect to λ suggested that we could determine a range
for standard variations of this parameter. Our experiments
provided a range of [ 0.1 , 1 ]. As a consequence of the very
low computational cost of the B-spline implementation, real
time segmentation is achieved.
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(a) Initial curve (b) Iteration 40

(c) Iteration 100 (d) Final segmentation (Iteration 430)

Fig. 9. Evolution of segmentation with the minimization of the criterion (21)
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(a) Frame 10 (b) Frame 20

(c) Frame 30 (d) Frame 40

Fig. 10. Segmentation through a sequence
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(a) Initial sequence

(b) Interpolation λ = 0 and β = 20 (c) Approximation λ = 0.3 and β = 0

Fig. 11. Smoothing spline to smooth contours



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2-SEGM 12

(a) frame 1: 1.33 seconds (b) frame 2: 0.12 seconds

(c) frame 3: 0.30 seconds (d) frame 4: 0.42 seconds

(e) frame 5: 0.25 seconds

Fig. 12. Computation time of the segmentation
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APPENDIX I
CUBIC SPLINE INTERPOLATION

A. Recursive Filter Factorization

Assuming that the data points P are uniformly sampled,
the interpolating cubic spline filter (B3

1(z))−1, given in (10),
can be factorized into a product of causal and anticausal
filters [33]:

(B3
1(z))−1 =

6
z + 4 + z−1

=
( −6z1

1 − z1z

) (
1

1 − z1z−1

)
(26)

where z1 = −2 +
√

3.
This factorization results in a cascade of first-order causal

and anticausal recursive filters. Thus, given the data points
{P (k)},k=0,...,N−1, the right-hand-side factorization provides
the cubic spline interpolating coefficients {Q(k)} ,k=0,...,N−1

through the following recursive algorithm:

Q̃(k) = z1 Q̃(k − 1) + P (k) (27)

Q(k) = z1 Q(k + 1) − 6z1 Q̃(k) (28)

for all integer k, and where Q̃(k) are intermediate coefficients.
We have to specify the initialization for the two recursions.

B. Initialization

1) Causal filtering: The first recursion (27) leads to the
following relation:

Q̃(N − k) = P (N − k) + z1 P (N − k − 1)
+ z2

1 P (N − k − 2)
+ ...

+ zN−1
1 P (N − k − (N − 1))

+ zN
1 Q̃(−k) (29)

Because the curve is closed, the data points are N -periodic,
i.e., P (N − k) = P (−k) for all integer k. As a result of
the filtering operations, the coefficients Q̃(k) and Q(k) are
N -periodic as well.

Letting k = 0 in (29) and using the N -periodicity of Q̃(k)
provides Q̃(0):

Q̃(0) =
(

1
1 − zN

1

) N−1∑
l=0

zl
1 P (N − l) (30)

The others coefficients Q̃(1), Q̃(2), ...,Q̃(N − 1) are obtained
by applying the induction (27).

2) Anticausal filtering: We now apply the anticausal filter
(28) on the coefficients Q̃(k) and, in order to trigger the
recursion, we need to initialize it by providing the value of
Q(N) = Q(0).

Similarly as for the causal case, we obtain the following
expression for Q(0):

Q(0) = Q(N) = −
(

6z1

1 − zN
1

) N−1∑
l=0

zl
1 Q̃(l) (31)

Then the induction (28) provides Q(N−1), Q(N−2) . . .Q(1).
We have thus specified the appropriate starting values for

both causal and anticausal filtering. We cascade these filters

with data points P to compute cubic spline coefficients Q.
The recursive algorithm is stable numerically, fast and easy to
implement.

APPENDIX II
CUBIC SMOOTHING SPLINE APPROXIMATION

A. Recursive Filter Factorization

Assuming that the data points P are uniformly sampled, the
smoothing cubic spline filter (S3

λ(z))−1, given in (15), can be
factorized into a product of causal and anticausal filters.
Let us consider the denominator of (S 3

λ(z))−1:

D(z) = z + 4 + z−1 + 6λ(z2 − 4z + 6 − 4z−1 + z−2) (32)

This polynomial can be factorized as

D(z) =
6λ

b
(1 + az + bz2)(1 + az−1 + bz−2)

=
6λ

b
S1(z−1)S1(z) (33)

where a and b are real numbers. Moreover, because D(z) does
not cancel on the unit circle, S1(z) has its roots—whether real
or complex—strictly inside the unit circle. This shows that the
smoothing spline prefilter can be implemented as a cascade of
second-order causal and anticausal recursive filters:

S3
λ(z) =

b

λ
· 1
1 + az−1 + bz−2

· 1
1 + az + bz2

(34)

Note that, by defining x = z − 2 + z−1 we can rewrite (32)
as D(z) = 6λx2 + x + 6 the roots of which are either real,
when λ ≤ 1/144, or complex, when λ > 1/144. This implies
that the roots of S1(z) are either real, when λ ≤ 1/144, or
complex, when λ > 1/144. It is only when λ = 1/144 that
S1(z) has double roots.

Given the data points {P (k)},k=0,...,N−1, the right-hand-
side factorization of (34) leads to the cubic smoothing spline
coefficients {Q(k)},k=0,...,N−1 by the following recursive
algorithm:

Q̃(k) = −aQ̃(k − 1) − bQ̃(k − 2) + P (k) (35)

Q(k) = −aQ(k + 1) − bQ(k + 2) + b
λQ̃(k) (36)

We now have to specify the appropriate initialization for the
two recursions.

B. Initialization

In order to determine the initialization of the recursive filter-
ing algorithm, we need to compute the impulse response s 1(n)
of the causal filter S1(z)−1 in the cascade expression(34):

• When λ = 1/144, S1(z) = (1 − z0z
−1)2 with

z0 = −5 + 2
√

6 and we immediately have

1
S1(z)

=
∑
n≥0

(n + 1)zn
0 z−n,

from which we obtain

s1(n) = (n + 1)zn
0 u(n)

where u(n) is the discrete step sequence u(n) = 1 for
n ≥ 0 and u(n) = 0 otherwise.
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• When λ 	= 1/144, the two roots z0 and z1 of S1(z)
are distinct. We can thus decompose S1(z)−1 in simple
fractions:

1
S1(z)

=
A

1 − z0z−1
+

B

1 − z1z−1

where A = (1 − z1z
−1
0 )−1 and B = (1 − z0z

−1
1 )−1. As

a result, the impulse response of S1(z)−1 is given by

s1(n) = Azn
0 u(n) + Bzn

1 u(n).

Note that the impulse response of the anticausal filter
S1(z−1)−1 (needed for the initialization of the anticausal
recursion) is given by s1(−n).

1) Causal recursion: The initialization of (35) requires
computing Q̃(0) and Q̃(1). Using the impulse response of
S1(z)−1, we have:

Q̃(0) =
∑
n∈Z

s1(−n)P (n),

Q̃(1) =
∑
n∈Z

s1(1 − n)P (n),

then, using the N -periodicity of P (n) (closed contour)

Q̃(0) =
N−1∑
n0=0

P (n0)
∑
n∈Z

s1(−n0 + nN),

Q̃(1) =
N−1∑
n0=0

P (n0)
∑
n∈Z

s1(1 − n0 + nN).

(37)

We thus need to compute an expression of the form
∑

n s1(k+
nN). For this, we consider the functions

gk(r) =
∑
n∈Z

rk+nNu(k + nN) with |r| < 1.

Since gk(r) obviously satisfies gk(r) = gk+N (r), we can
restrict k to [0, N − 1] and we find

gk(r) =
∑
n≥0

rk+nN =
rk

1 − rN
.

Thanks to the N -periodicity, k has to be replaced by
(k mod N) in this expression when k 	∈ [0, N − 1]. Moreover,
by simple differentiation of gk+1(r), we also have that∑
n∈Z

(k + nN + 1)rk+nNu(k + nN) = g′k+1(r)

=
(k + 1)rk

1 − rN
+

NrN+k

(1 − rN )2
.

(38)

Finally, we find that
• when λ = 1/144,∑

n∈Z

s1(k + nN) = g′(k modN)+1(z0); (39)

• when λ 	= 1/144,∑
n∈Z

s1(k + nN) = Agk mod N (z0) + B gk mod N (z1).

(40)
These expressions can be substituted in (37) to provide the
initial conditions to the recursion (35).

2) Anticausal recursion: The initialization of (36) requires
computing Q(N − 1) and Q(N − 2). Using the impulse
response s1(−n) of S1(z−1)−1, we obtain:

Q(N − 1) =
b

λ

∑
n∈Z

s1

( − (N − 1 − n)
)
Q̃(n),

Q(N − 2) =
b

λ

∑
n∈Z

s1

( − (N − 2 − n)
)
Q̃(n),

then, using the N -periodicity of Q̃(n) (closed contour)

Q(N − 1) =
b

λ

N−1∑
n0=0

Q̃(n0)
∑
n∈Z

s1(n0 + 1 + nN),

Q(N − 2) =
b

λ

N−1∑
n0=0

Q̃(n0)
∑
n∈Z

s1(n0 + 2 + nN),

(41)

By substituting the expressions found in (39 and (40) in
these equations, (41) provides the initial conditions to the
recursion (36).

To summarize the process described above, given data
points {P (n)}n=0...N−1, we cascade a causal and an anti-
causal filter to compute the cubic smoothing spline coefficients
{Q(n)}n=0...N−1. As for interpolating spline, the recursive
algorithm for smoothing spline is stable numerically, fast and
easy to implement.

APPENDIX III
FLOW-CHARTS OF THE ALGORITHMS

A. Cubic spline interpolation. See Fig.13

B. Cubic Smoothing Spline approximation. See Fig.14
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Fig. 13. Flow-chart of our Algorithm based on cubic spline interpolation
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Fig. 14. Flow-chart of our Algorithm based on smoothing spline approximation


